Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 285: 112117, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33609979

RESUMO

Synthetic dye bioremediation is a topic of great importance since these pollutants possess toxic effects, and huge quantities of them are being discharged into water bodies. Ligninolytic enzyme treatment stands out for being a cost-effective methodology, capable of obtaining high decolorization levels. In this work, a laccase enzyme treatment was evaluated to effectively perform a cycle of dye bioremediation. Furthermore, a dye decolorization improvement was also assessed through laccase immobilization. Particularly, a Trametes pubescens enzyme extract was concentrated, immobilized onto calcium alginate beads, and characterized to assess its dye decolorization potential. Ammonium sulfate precipitation and vacuum evaporation were evaluated to concentrate the crude extract and to decolorize allura red AC. Both treatments reached a high enzyme yield recovery (>90%), but only the vacuum-evaporated extract achieved a high allura red AC decolorization level after 16 h of contact time. This suggested that essential compounds for allura red AC decolorization were present in the crude extract, implying that neither a complete laccase purification process nor an addition of synthetic mediators are necessary. Under optimized immobilization conditions, 94.6% immobilization efficiency and 49.8% activity recovery were obtained with 0:1 alginate:enzyme (v/v), 100 mM CaCl2, and 5.0% w/v sodium alginate. Furthermore, by immobilizing the laccase concentrated extract, both the pH and temperature stabilities were improved. The decolorization of allura red AC by free and immobilized laccase was 68.4% and 4.6%, respectively, showing that although the enzyme stability was improved, dye decolorization was negatively affected. Thus, an efficient allura red AC decolorization was obtained with concentrated-free laccase by a feasible and low-cost methodology.


Assuntos
Lacase , Trametes , Biodegradação Ambiental , Corantes , Polyporaceae
2.
J Environ Manage ; 254: 109805, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31733474

RESUMO

Industrial pollution is a great concern for modern society and developing cyclic processes is one of the major challenges. As far as we know, this work is the first to report the use of multiple white-rot fungi species for degrading a binary mixture of anionic dyes under solid state fermentation (SSF) conditions and a further physicochemical characterization of the residual biomass. First, eight white-rot fungi decolorized the dye mixture of brilliant blue FCF and allura red AC adsorbed onto corncob, reaching decolorizations between 11.47% and 87.64%. Then, I. lacteus, B. adusta and T. versicolor, based on the decolorization yield, were selected to evaluate the effect of carbon:nitrogen ratio, moisture content and inoculum quantity on the decolorization percentage. The factorial designs showed that C:N ratio had a negative effect while moisture and inoculum quantity a positive effect. In terms of the kinetics, the three white-rot fungi achieved their maximum decolorization level, around 80.11-86.04%, after 10-12 days. I. lacteus exhibited the highest decolorization percentage, even though only the enzyme manganese peroxidase was detected, with a maximum activity of 6.62 U gds-1 at day 14. Besides, T. versicolor was the only species with laccase activity, with a maximum of 15.94 U gds-1 at day 6 of fermentation. The physicochemical characterization of the biomass allowed to conclude that these aggregates represent a potential organic amendment, as for their significant oxidizable organic carbon (more than 9.5% on wet basis) and essential nutrients content, as well as for their low ash content (less than 1% on wet basis). Finally, for outlining an efficient bioremediation cycle, a cheap and effective methodology for drying the biomass at the end of the SSF process is required.


Assuntos
Corantes , Lacase , Biodegradação Ambiental , Biomassa , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...